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An approximation procedure is presented based on the method of moments which signi- 
ficantly reduces the amount of mathematical calculations and formalizes the selec- 
tion of approximating differential equations. 

The approximation of replacing a boundary-value problem of nonstationary heat conduction 
by a system of ordinary differential equations or transfer functions for each point of the 
body under study is a widely used technique in engineering calculations. An effective method 
of generating these approximations is the method of moments [1-3], which gives good approxi- 
mate results in wide time and frequency ranges with the use of simple relations. However, 
its application usually requires laborious mathematical manipulations. In addition, in order 
to choose the approximating differential equations (or transfer functions), the exact forms 
of the time or frequency characteristics must be known at the given point of the body. 

The most difficult step in this approximation is finding the linear integral values li. 
By definition [3] 

j ' . (  . . .  / =  1, 2,  . . .  
0 0 0 

In analytical approximations expression (i) is not directly used because it requires the 
previous calculation of ~p(t) . The li are obtained from the transfer function Y(r, s) of 
the body, relating the Laplace transform of the gain e(r, t) -- e(r, 0) and that of the 
excitation U(t) -- U(0) for an initial distribution 0(r, 0). The transfer function Y(r, s) 
is obtained by solving the original boundary-value problem for the Laplace transform [4]. 
The ~i are then determined from the relation [i] 

1 d ~Y(r, s) 
lira (2) l i = ( - - 1 )  i ~  ~0  ds i 

The calculation of Z2 from (2) for multilayered walls or even for a single-layer cylinder 
requires a great deal of mathematical labor. It is more sensible to determine the ~i from 
an expansion of Y(r, s) in a power series in s [3]." 

i=l 

and t h e n  

li = K s , .  (4) 

R e l a t i o n  (4) was u sed  i n  [2 ,  5 ] .  However ,  i t  i s  s t i l l  v e r y  l a b o r i o u s  t o  o b t a i n  (3) f o r  
c y l i n d r i c a l  b o d i e s .  

The a p p r o x i m a t i o n  p r o c e d u r e  d i s c u s s e d  h e r e  i s  b a s e d  on t h e  e x p a n s i o n  o f  v a r i o u s  c o m b i n -  
a t i o n s  o f  t r a n s c e n d e n t a l  f u n c t i o n s  t y p i c a l  f o r  t h e  t r a n s f e r  f u n c t i o n s  of  b o d i e s  h a v i n g  t h e  
form of  an i n f i n i t e  c y l i n d e r ,  i n f i n i t e  p l a t e ,  o r  a s p h e r e .  I n  t h e  a n a l y s i s  o f  t h e  t r a n s f e r  
f u n c t i o n s  o f  s i n g l e - l a y e r  b o d i e s  o f  t h e  above  forms f o r  v a r i o u s  c o m b i n a t i o n s  o f  b o u n d a r y  c o n -  
d i t i o n s  o f  t h e  f i r s t  and s econd  k i n d s ,  i t  has  been  e s t a b l i s h e d  t h a t  f o r  any t y p e  o f  b o u n d a r y  
c o n d i t i o n  and i n d e p e n d e n t l y  o f  t h e  number o f  l a y e r s ,  t h e  t r a n s f e r  f u n c t i o n s  f o r  c y l i n d r i c a l  
walls can be written in terms of three combinations of modified Bessel functions 
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where a and b 

For solid cylinders the structure of the 

1 
{,~ [a, O] = 

2 

For plane walls the transfer function is 
hyperbolic functions: 

{o~[a, tJ] = to (az) I(o ( O z ) - -  Io {bz)/(o (az), 

c [a, b] = Io (az) K~ (bz) ~- 11 (bz) Ko (azL 0} 2 

0}~ [a ,  b] ~ 11 {a2')/(1 (bz) - -  11 (b2) 1(1 ( az ) ,  

are positive numbers and z = /s/a' We also have 

{oCla, b] = --{%C[b, a], C i a ,  b] = - - m C [ b ,  al. 

transfer function involves only the 

1 
Io (az) I, {,}c lO, bl = - -  ,11 (bz~. 

Z 

c h a r a c t e r i z e d  by  t h e  f o l l o w i n g  two 

o.,PIa, b l = % P I a ,  b] . . . . .  1 [ s h ( a z ) c h ( b z ) - -  s h ( b z ) c h ( a z ) ] =  1 s h [ ( a - - b ) z ] ,  
2 2 

coP[a, b] = l j _  [oh (az) ch (bz) - -  sh {az) sh (bz)l : 1 ch [(a--b) z], 
2 Z 

P o}i. 3 [a, b] = --{~ [b, a], c%_P'ta, b] = {o2P[b, al.  

two forms 

combinations of 

The transfer function of a 

{%s la, b] - -- 

ab 

spherical shell can be expressed in terms of 

{o~[a, b l -  1 1 s h l ( a - - b )  zI, 
ab z 

abl ~-1 {__~_z sh[(a __b)z] + c h [ ( a _ b ) z ] }  , {,}~ Ia, ~ 1  - 

z [ ,  ab z 2 z , a b , , 

For a solid sphere we have 

a 

We obtain series expansions 

I sh(az);  {o;S[o, bl 1 1 [. 1 s h ( b z ) - - c h ( b z )  ] 
z '~ ' b z ~ ! b e  J 

w 

f o r  t h e s e  c o m b i n a t i o n s  a s  f o l l o w s :  

where for cylindrical 

{';1 [a, b] = a0 [a, b] § a 1 [a, bl z-' 4- a.~ [a, b] z s + 0 (z% 

(% [a, b] ----- ~0 [a, b] __1 + ~ti [a, b] z -~- ,uo. [a, b] z 3 + 0 (z~), 
Z 

~% [a, b] = Vo [a, b] + v~ [a, b] z ~ + v~ [a, b] z" § 0 @% 

walls [6] 

o i r % [a, bl In a-i-~ bl | ( a  2 b ~'-- ] = (Z 1 [a,  + b 2) In  a 2 
v ' - T  b ' J 

e [a, b] = af -t- 4a"-b ~ 4: b ~ ln-K--a -1- 3 
~2 64 b - T ~ -  (b~ - -  a'9, 

a2 -- b~- 
1 ttCla ' b ] =  b__ln_b + _ _ ,  

1 Fc [a, bl = - ~  (b ~ + 2a~b) In b__ _}_ (a 2 - -  b:)(a '- _a 5b'-') 
a 64b ' 

a 2 - b  ~ ab In b a f ' - b  s vg[a, b] = - - ,  ve[a, b] =- -'r , 
2ab 4 a 16ab 

i [ + _ _ a b ( a . ,  b . 9 +  ] v~[a, b]----~,  ab(a  2 + b  2) In b 3 a n - b  6 
4 TKg 

(5) 

(6)  
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for solid cylinders 

4 64 

vg[O, b l -  b v~[O, O [ -  ba ,,~[0, h i =  b~ 
2 ' 16 ' ~ 384 

for plane walls 

for spherical shells 

and for solid spheres 

P~ b] a - - b ,  tz o l a ,  = 
- "  120 

, + ~p 1 (a - -  @ ,  
~oP[~, hi---1 ,~,PIa, b]= (a - -b)~ '~a 'b l=  24 

aS[a ,  b] - a - - b  ( a - - b )  "~ S lc~., b] ( a - - b ) ~  
6ab " 120ab ' 

~ la, bl = 

b ~ 6ab'~ 

120ab* 

(a - -b ; [ (a - -b ) " -  + 3ab] ~S[a,  b] = (a-~b)Z[(a--b)~-4:-  5ab] 

3a2b "- ' 30a'-b~ 

�9 s [a, b] =-" (a - -  b)5[(a - -  b) 2 + 7ab] 

~ 840a=,b ~ '. 

,,2 ~ 
p~ ia, O] = 1, F~Sl a, O] = --:~-, rtes Ia, O] --  

120 

b b 3 b 5 
VoS [0, bl . . . .  ~'i s [0, b] v:~ [0, b l  = - -  - -  

3 ' 3O ' 8 4 0  

O(a) in (6) denotes an infinitesimal quantity of higher order than a = a(z) in the limit 
z-~0. 

With the help of the above combinations and their expansions, Y(r, s) can easily be 
put in the form of a ratio of two power series: 

do + dlz ~ + d~z ~ + . . . g(r, s )=  
co + e,z ~ + c2z ~ + . .  �9 

Then "we have the relations 

(7 )  

Io = - t i m Y ( r ,  s) = ,do l ~ = ] i m  d y ( r ,  s ) - -  d ~ c ~  d~ 
s~o Co s~o ds a'c2 

d 2 2 [d2co - -do% q ( d , c o - - d o c l )  1 
12 = l i r a  Y ( r ,  s )  . . . .  

~ o  as  ~- (a,)~ C2o c~ 

Analysis of the transient and frequency characteristics of bodies with the geometrical 
forms considered above, and for various combinations of boundary conditions of the first, 
second, third, and fourth kinds has shown that for fixed r they can be described (with suf- 
ficient accuracy for the solution of many practical problems) by the following transfer 
functions of circuits with lumped parameters: 

K K 
W 1 (s) = , W~ (s) = - -  exp ( - -zs) ,  

T1T~s ~" + ( T , +  T2)s+ 1 T~s + I 
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W a ( s ) = K  Tas4-1 , W/'a(s)=K[TsT: ~ + ( T S + T ~ ) s + I ]  
T :  + 1 (8) 

or by the corresponding ordinary differential equations. 

It has been established that the quantities T~T2 and T~ + T= can be used to uniquely 
choose an approximating transfer function from the set (8) (in the absense of exact dynami- 
cal characteristics). 

With these results and a comparatively small amount of elementary calculation, we can 
approximately replace a boundary-value problem of nonstationary heat conduction by a system 
of differential equations corresponding to the transfer functions of the forms in (8), along 
with the initial conditions of the original problem. The following is the procedure [7]: 

i. Solve the boundary-value problem for the Laplace transform and thereby obtain Y(r, 
s). 

2. Decompose Y(r, s) into the combinations ~i[a, b]. 

3. Put Y(r, s) in the form (7) with the help of Uk[a, b], ~k[a, b], and Vk[a ~ b] (k = 
0, i, 2). 

4. Calculate for a given r = rj 

K -  do , T ~ + T ~ = + (  cl d~ ) ,  TIT2=(T~+T~)~__L, (9)  
C 0 ~ , Co do 

L = _ _  
1 ( (;"-' C__K~ Cld____2_1 + c~ ) 

(a')  ~ do Co codo Co " 

5. Choose for the givenr =rj thetype of approximating transfer function and determine 
its parameters: 

a) if T~+T2~0 and T~T~s">~-.O, , then Y(ri, s)~Wl(s ) or W2(s), where T4 = L/(T~ + T2), 
T = --T4 In[L/(T~ + T2)2], and if ~ = (T~ + T2)/2/T~T2 ~> i, then 

K T, + T 2 . / #  (T, + T~) ~ 
Wl(s)-- ( T : +  1)(T2s @ 1) ' T m  - -  2 +- ] /  4 TIT~ 

otherwise 

b) if TI+T2"O 
(TI + T2); 

W i t s ) =  K , T = I / T 1 T  ~; 
T2s 2 + 2iTs + 1 

and  T~T2 < 0 ,  t h e n  Y(O, s )~Wa(s  ) , w h e r e  T4 = L / ( T ~  + T 2 ) ,  T3 = T4 

c) if T~ + Tz < 0, T~T2 > 0 and L > 0, then Y(O, S) N'W~(S), where TsT6 = L, Ts + T6 = 
--(T~ + T2), and if 

Ts+T~ ~ 1 ,  
~ =  2 1 / ~  

then 

lY/~(s) = K ( T : +  1 ) ( T : - } -  1), Ts,8 - -  T s +  T 6 
2 

- - + - -  / / ( T s + T 6 ) ~ 4  TsT6, 

otherwise 

~,(s)  = K(Y~: + 2~1Y: + 1), r - V 7--7E; 

d)  i f  T1 + T2 < 0 ,  T1T2 > 0 and  L < 0 ,  t h e n  Y(O, s)~W3(s). 

The transfer function of a body with N layers of different thermal diffusivities con- 
tains N variables zl = /s/a~' ..... z N = f~-~. Therefore, before decomposing Y(r, s) into 
the combinations mi[a, b] it is necessary to transfor to a single variable z (say z = zl) 
using the relation Zn = Cn z, where en = /a1-~-7~n', n = I, 2 .... ,N. Obviously in this case 
one must take a' = at' in using (9), and the coefficients a and b in the combinations mi[a, 
b] and their expansions must take into account the en- For example, 
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Io (az,,.) Ko (bzi) - -  Io (bzi) Ko (azi) = lo (aaiz) Ko (be~z) - -  Io (beiz) Ko (ae~z) = o)C[aei, bei], 

71 [a~, b~] - T [ ( a ~ ) ~  + ( b ~ ) i ]  - -  . 

We n o t e  t h a t  f o r  g i v e n  bounda ry  c o n d i t i o n s  t he  form o f  Y ( r ,  s)  i n  t e r m s  o f  t he  w i [ a  , b] 
and t h e  e x p r e s s i o n s  f o r  t h e  c o e f f i c i e n t s  ek ,  d k i n  t e r m s  o f  ~ k [ a ,  b ] ,  Vk[a ,  b ] ,  and v k [ a ,  b] 
are identical for bodies of the geometrical forms considered here. This property is especi- 
ally useful in choosing the simplest computational scheme. 

Our procedure was tested for single-layer and double-layer cylindrical plates and 
spherical shells for various possible combinations of the different types of boundary condi- 
tions by comparing with the exact frequency characteristics, Y(r, s), and transient charac- 
teristics obtained by solving the original boundary-value problems by the grid method. The 
application of our procedure to diverse control optimization problems of thermal processes, 
thermal instrumentation and temperature converters shows that the procedure is highly effec- 

tive. 

Example. It is required to approximate the following boundary-value problem for a com- 

plete cylinder: 

In this case U(t) 
[4] we obtain the solution for the transform: 

r ~' 
O(r, s ) - -  1 O(r, O ) : Y ( r ,  s) q(s), z : V  s /a ,  

S 

where 

OO(r, t ) _  a ' [  030(r't)  1 OO(r,t) ] 
Ot [ Or ~ ~- --r Or ] , t > O, r E [ R1, Ri], 

_ %  OO(R,,  t) _ 0, - - ~  OO(R~, t) + q ( t ) = O ,  ( 10 )  
Or Or 

O (r, O) = O. 

- -  U(0) = q ( t )  (q (0 )  = 0 ) .  A f t e r  t a k i n g  the  Lap lace  t r a n s f o r m  o f  (10) 

C 

Y (r, s) = Io (rz) K, (Rlz) + It (Rlz) Ko (rz) _ 0)2 lr, Rt] 
__  0. )  c ~Z [11 (RI z)/(t (R2 z) 11 (RiZ) K1 (Rtz)] ~z 3 [R1, R2] 

This transfer function cannot be represented in the form (7) directly. 

multiply numerator and denominator of Y(r, s) by z and obtain 

r 

_ zoo2 [ r ,  R1] 
a~ I i  Y*(r ,  S), Y* (r, s) (oC[R,, R,] Y(r,  s )=  ~, S 

It follows from (6) that 

Y*(r ,  s )=  F~[r, RI]-]-~Cl[r, Rl]zi-~[z~[r, Rt]zt~-W . . .  
C ~c[R1, Ri] § "~c[R1, Ri] z 2 + ~ - [ R i ,  R i ] z & +  . . . 

Therefore, 

Therefore, we 

do = ~tC[r, RI], dl : - F c [  r, R1], d.2= ~tC[r, R1], 

=: = ~2 [RI, Ri]. Co = %ciR .  R=I, cl ~ c [ R .  Ro.], c~ ,c 

We illustrate the procedure for the example: RI = 0.02 m, R2 = 0.i m, a' = 1.35"10 -~ mi/sec, 

= 51.5 W/(m-~ 

For r = 0.1 m 

K =  - -20 ,83  M-', T 1 + T ~  ==--8247sec, TtT ~ = 8937sec 2. L == - -2135seJ ,  

Y*(0,1; s ) ~ W 3 ( s ) - = K  T3s-F1 , T 3 :  108,4sec,T~=25,88sec 

For r = 0.05 m 
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TABLE i. 
Method and by Approximating Differential Equations 

~ 

Solution of the Boundary Problem (i0) by the Grid 

Fo=ta'/R ~ 

0 (0,1; t) ~iedhod 

~ from (15) 
grid 

@ (0,05; i) I method 

~ if tom (16) 
F 

0 0 , 0 1 0  

2,152 

1,525 

0 0,001 

0 i0,009 

0 , 0 2 0  

3,205 

2,772 

0,019 

0,057 

0 , 0 5 0  

5,385 

5,449 

0,434 

0,496 

Note. When Fo § ~, 

0 , 1 0 0  0 , 1 5 0  0 , 2 0 0  0 , 2 7 5  

i I 
8,291110,51112,58 15,62 / 

 Y4/ 
1,899 l 3,6~8 ] 5,622 i 8,6151 

0 ,375  

19,62 

19,67 

12,61 

12,65 

K = -- 20,83 M - t ,  

Y* (0,05; s) ,~ W~ (s) = 
(TlS + 1)(T~s+ I) 

the approximation errors decrease. 

T1 ~, T2 = 46,15sec, T,T 2 = 314,2sed,L ---'- 1815 sec 2, 

K 
, T i - -  37,84 see, T_~ = 8,303sec, 

Therefore, 

a' 1 KT~s-I- 1 0(0,1; s) - - 1 - -  @(0,1; 0)~,  q(s), 
s ~, s T,:s @ 1 

1 a' 1 K 
0 (0,05; s) - -  0 (0,05; O) ~ q (s). 

s ~, s (T~s-F 1)(T2s + 1) 

(11 )  

(12) 

Hence for the values of r considered above, the boundary-value problem (i0) can be 
replaced approximately by a system of ordinary differential equations with corresponding 
initial conditions 

Ta d20 (t) ~ d O ( t ) _  a' [ ~ ] 
dP ~ dt ~ K T3 -}- 1 , r 0,1m, 

e ( o , 1 ;  o) = o, q(O) = o, 

T~T2 dZO(t) @ ( r  I + r~) d~'O(t) @ dOtt) a' . . . . .  Kq (t), r = 0,05m, 
dP dt 2 dt 

o (0,05; o) = o, q (o) = o. 

(13) 

(14) 

The accuracy of the approximation can be estimated by comparing the transient charac- 
teristics obtained with the help of (13) and (14) with the transient behavior obtained from 
the solution of (i0) by the grid method. We assume that at t = 0 +, q gradually varies from 
0 to qz. The solutions of (13) and (14) are easily obtained by operational methods using 
(II) and (12), Since in this example we have q(s) = q~/s: 

O(0,1; t ) ~ - -  Kql (T~--T3)exp - -  - - T ~ + T ~ + t  (15) 

O (0,05; t) ~, ~ Kql T1 _ T2 - -  - ~  . . . .  T1 --- T~ exp ' t ] 

The results of the comparison are given in Table 1 for the case ql = I0,000 W/m 2. The 
results can also be compared with the analytical solution given in [4]. 

NOTATION 

% ~-~, approximated and (i -- l)st approximating transient characteristics; @(r, t), 
temperature field; r, t, coordinate and time; U(t), the perturbation causing the variation 
| t) -- O(r, 0); s, Laplace transform variable; K, static gain coefficient~ T~,...,T6, 
time constants; T, lag; a' and I, thermal diffusivity and thermal conductivity. 
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FINITE-ELEMENT MODELS FOR CALCULATING THE 

TEMPERATURE FIELDS OF UNDERGROUND PIPELINES 

A. N. Khomchenko UDC 532.542:624.139 

A simple method of constructing finite elements for the numerical modeling of tem- 
perature fields of underground pipelines is outlined. 

In the practical design of mains pipelines, problems of temperature-field calculation 
are of particular interest [I]. Variations in the temperature conditions of the pipeline 
and the surrounding material exert an influence on the stress--strain state of the tube and 
cause settling of the earth, which leads to stability loss of the pipeline and other unde- 
sirable consequences [2]. Recently, there has been a trend to more completely taking account 
of the whole set of real conditions of pipeline use. In connection with this, there has been 
a significant increase in the role of numerical methods of calculation with the use of a com- 
puter. The most flexible and universal method is the finite-element method (FEM), which 
presently occupies the central position in engineering calculations [3]. FEM allows the ther- 
mal interaction of the pipeline with surrounding material of inhomogeneous structure to be 
analyzed [4], and allows the influence of imperfections and damage in the insulation and 
other anomalies in the thermophysical characteristics to be taken into account. 

The present work outlines a simplified method of constructing finite elements (FE), 
taking account of the geometry of the problem and allowing errors of boundary approximation 
to be eliminated. In this case, plane FE in polar coordinates (Fig. i) and three-dimensional 
FE in cylindrical coordinates (Fig. 2) are most appropriate. 

Constructing an interpolational polynomial for the FE entails selecting an appropriate 
system of finite basis functions. The temperature values T i at corners of the FE are taken 
as the interpolation parameters. The problem reduces to constructing the coordinate func- 
tions ~i- Usually [3], this problem involves investigating a system of linear algebraic 
equations, the order of which is equal to the number of degrees of freedom of the FE. Sol- 
ving such systems by means of matrix algebra entails laborious transformations and well- 
known ealculational difficulties. 

A simple and expedient method of geometric formalization of the FE basis is now written 
[5], generalizing the probability concept of baricentric coordinates of simplex models. Pro- 
bability identification of the basis significantly simplifies the procedure for constructing 
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